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Abstract. Given a one-dimensional Sturm-Liouville Soédinger problem with rational
polynomial potential, we can generate the continuous wavelet transform (CWT) for its discrete
states, thereby permitting the systematic multiscale reconstruction of the corresponding bound-
state wavefunction. A key component in this is the use of properly dilatedn(d translatedi)
momentsu, 4 (p), which readily transform the configuration space Hamiltonian into a finite set
of dynamically coupled, linear, first-order differential equations in the dilation-related variable,
_ 1.

V=32

s

Ay tipy () =Y My [E, b, y]upy () 0<i<my.

j=0
The infinite scale problena = oo (y = 0) is readily solved through moment quantization
methods and used to generate thg, (p) moments at all scales. We demonstrate the essentials

) ) . 6 .
through the rational fraction potentidl,(x) = 1$x2’ and the% Coulomb potential.

0. Overview

Over the last 10 years, wavelet transform analysis has become a powerful tool in the analysis
and synthesis of signals and images (Chui 1992). Its main contribution is the definition of
a systematic process for identifying, extracting, and reconstructing the multiscale features
of a signal through simultaneous time and frequency localization.

Until the recent works by Handy and Murenzi (1996, 1997; HM), the incorporation of
wavelet theory into quantum mechanics has depended, almost exclusively, on variational
methods. Exceptions to this are the earlier works by Plantevin (1992) on wavelet transform
analysis for noninteracting quantum systems, and Paul’s (1984) specialized wavelet-coherent
state analysis for the one-dimensional harmonic oscillator and Coulomb potentials.

Working within an extended space of properly translated and scaled momgnpis:) =
[ dx x? exp(—yx?)W (x + b) (for the Mexican hatwavelet case, where the scale parameter
is defined bya = ﬁ ), HM have been able to transform the Satinger equation, for
rational fraction potentials, into a theoretically exact, finite set of dynamically coupled,
linear, differential moment equations

Oyt () = ) MiIE, byl (j)  0<i, j<m, (0.1)
j=0
where theM; ; coefficients andn, are dependent on the nature of the potential function.
Given the appropriate initial information (fop = 0), the solution to these equations
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readily yields the wavelet transform for the unknown discrete state, which in turn (through
various inversion or reconstruction methods) allows us to generate the desired wavefunction
configuration,W. The only essential ingredient in solving these equations is knowledge of
the infinite scale properties, at= co or y = 0, of the discrete state desired,(o(p) and

E). This information is readily provided through moment quantization (MQ) techniques.

MQ refers to transforming the configuration space 8dimger equation, ¥ (x) =
EW(x), into a moment equation (MEy(p) = Y 7", C,[E]lv(p + i), wherev(p) =
woo(p), and quantizing within such a representation. The ME is equivalent to generating
the power series expansion coefficients for the Fourier transform of the configuration
space wavefunction solutiont(; (x) — Wz (k)). Clearly, depending on the nature of the
potential function, the associated Fourier representation will involve a differential operator
of arbitrarily high order ;). In terms of the ME represention, this involves an increased
number of independent (initialization anissing momentvariables, than the usuaio
associated with second-order differential operators in configuration space.

For the last 16 years, the development of MQ methods has received much attention
by several independent groups. One of the earlier formulations by Blankenletchbr
(1980) quantized the ME representation of the 8dirger equation by imposing constraints
derived from asymptotic information about the (physical) power moments,(Liw(p)).
Refinements by Killingbeclet al (1985), attempted to simplify this procedure, as well as
incorporate regular perturbation theory methods (in this regard, refer also to Fernandez
and Ogilvie 1993). The incorporation of perturbation theory within the ME representation
has been particularly effective, particularly as pursued in subsequent, multidimensional,
investigations by Witwit (1995).

Paralleling these developments are the works by Handy and Bessis (1985; HB), and
Handy et al (1988) who made unprecedented use of thement problem(Shohat and
Tamarkin 1963) nature of the ME representation, as applied to bosonic ground states.
Their method,the eigenvalue moment meth@@MM), introduced linear programming to
guantum physics, in a significant way, and also produced one of the simplest theories for
generating converging lower and upper bounds to the ground-state energy (which can also
be extended to excited states, provided certain empirical assumptions are made, Handy and
Lee (1991)). Also, because of its nonperturbative nature, the EMM approach is sensitive
to singular-perturbation/strong-coupling type Hamiltonians, and has easily solved important
multidimensional problems when compared with more sophisticated approaches (@tandy
al 1988). In contrast to the asymptotic methods by Blankenbetlai (1980), the EMM
approach requires no asymptotic information about the moments (which, in general, can be
difficult to obtain). Instead, it focuses on the importance of itiesing momenstructure
of the ME representation.

Another related approach is thRayleigh—Ritz missing momeranalysis recently
developed by Handy (1996). It may be easier to implement, for larger-dimensioned systems,
than the EMM analysis.

Any one of the QM approaches cited can be used in implementing the methods
developed here. However, the latter two highlight the essential role that the missing
moments play in the incorporation of continuous wavelet analysis in quantum mechanics.

In this work we apply the HM formalism, in some detail, to two rational polynomial

potential problems:V (x) = %;z and the;l Coulomb potential. Previous works by HM
primarily focus on implementing their moment-wavelet formalism in the context of the
quartic anharmonic oscillator potential problem.

For simplicity, we limit our analysis to the ground-state case only. Handy and Murenzi

(1996) have shown how to extend the analysis to excited states.
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Our formalism applies to a broad class of wavelets. The exclusive appearance of the
Mexican hatwavelet in this work is only for convenience. In general, the methods developed
here apply to any wavelet of the forfje?™, i > 1, providedQ(x) is a polynomial, and
Lim‘x|_>oo[8)’;eQ(’“)] =0.

1. Continuous-wavelet analysis

An important aspect of wavelet analysis is the notion dfaane It was introduced by
Duffin and Schaefer (1952) and used by Daubecbiesl (1986), and Daubechies (1990)
for canonical and affine coherent states.

A family, {y;};es, of vectors in Hilbert spaceft, is called aframe if for any f € ‘H
there exist two constant$ > 0 and O< B < oo, such that

AlLFIP < D11 AP < BILFIP. (1.1)
jeJ
The frame is said to be tight il = B.

Consider the operatdf : H — [2(J), defined byTf = {(y;|f)}je;. The operator
D =T*T, whereT* is the adjoint operator of, is invertible and the family

S, 2 (., 2D\
v = (T°T) %—M;(l A+B) v (12)

defines thedual frameof v;, with corresponding bound8=! < A~1 < oo.
An important reconstruction formula is

F) =Y (Wil )P (x) (1.39)
jeJ
or
FO) = W1 )9 (x). (1.30)
jeJ

Using only the first term in the expansion in equation (1.2), one ggisprox = 525V
resulting in

2
)~ A1B jej(wjlf)lﬂj(X)- 1.4)

If the frame is tight,A = B, one hasj; = %Vf_i giving us the exact expression

1
FG) =5 Wil N w0, (1.5)
jeJ
A continuous-wavelet transform requires the selection of a wavelet functign),
satisfying [ "“l(,f‘)'z dk < +o0, whered(k) is the Fourier transform (Grossman and Morlet

1984). In addition, we adopt the unit normalizatig‘n|¢o()c)|2 =1, utilized by Daubechies
(1992) in her dyadic reconstruction formula, given below. One of the more popular wavelet
functions is theMexican hat corresponding to

(x) = —N2exp—1x%) = N (1 — x?) exp(— 3x?)

whereN = 2

\/én*%. We shall use this wavelet throughout this work.
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The wavelet transform of a one-dimensional signal (wavefunctigniy,), is given by

WW(a,b) = «/a‘lfa) ((x ;b)) W (x) dr (1.6)

wherea > 0 andb define the scale and translation parameters, respectively.
The recovery of the wavefunction is possible through the use of the relations in
equations (Ba) and (13b):

W) =Y (@nn ()W (X)) By (¥) (1.72)

m,n

or

W) =) (@ ()W () ) () (1.70)

m,n

wherew,, ,(x) = a, M2 (7 ”'Z,"”O ) define a frame (for arbitrary integens andn), @,,., (x)
is its dual frame.

As previously noted, if the frame tight then®,, ,(x) = A+B Wm.n(X), Where— =1.If

the frame is not tlght§ # 1, then there are two possibilities (Daubechies 1990, 1992). The
first is to compute the dual frame. For this case, if the frame consists of wavelets (dilations
and translations of one mother wavelet(x)), then the dual must be computed for each
translation,ag,,. Although, in principle, this entails the calculation of an infinite number
of functions, in practice only a finite number are used. Despite this, there are some special
wavelets,w(x), andbg parameter values, for which even though thg, (x) are not close
to defining a tight frame, nevertheless all g ,(x) are dilated versions of one function
(Daubechies 1992, Fraziet al 1988).

The second possibility applies to non-tightug frames for WhiCh% ~ 1. In this case,
one may take the first term in the defining series expansio@,fofn(x), as in equation (1.4).
The resulting approximation yields the reconstruction formula (for the gase2, by = 1)
(Daubechies 1991)

(x —n2m)
\Ij(x) ~ Zwm n ( om > (18)
wherew,, , = WW (2", n2"), andA + B = 6.819 (or the Mexican hat cage

The reconstruction formula in equation (1.8) is approximating the wavefunction through
a superposition of localized oscillating structures. The wavefunction is being approximated
in the L? norm. Through the EMM discussed in the following section, we will be able
to generate a finite number of the, , coefficients, thereby enabling the approximate
reconstruction of the wavefunction.

We stress once more that our principal objective is to show how EMM theory can be used
to generate the,, , coefficients. There are many possible wavelet-reconstruction formulae,
some involving Gaussians (Chet al 1993) as opposed to the Mexican hat wavelets in
equation (1.8). We only utilize equation (1.8) as an example of how to utilize the generated
wavelet coefficients in the reconstruction of the wavefunction. Also, the method can be
extended to excited states (Handy and Murenzi 1996).
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2. Generating thew,, » through the EMM

From the preceding discussion, the Mexican hat wavelet transform for the wavefunction is
given by (after a translation change of variables):

WW(a,b) = NvVa1 /m Wb+ x)[1 - (x/a)*]exp(—5(x/a)?) dx (2.1)
or (definingy = %) )

W (a, b) = N'2y)¢[1tp.y ) — 2y s, ()] (22)
where

., (p) = /m xPW (b + x) exp(—yx?) dx p=0 (2.3)

are the moments of the measubg , (x) = ¥ (b + x) exp(—yx?).
The moments satisfy the following differential equation with respect tojthe 0
variable:

Oy Upy(P) = —tpy (p+2). (2.4)

For all one-dimensional Scidinger Hamiltonians with rational fraction potentials (as well
as many other types of potentials which can be converted into rational fraction form after
a suitable change of variables), all of the moments become linearly dependent on the first
1+ my; moments (referred to amissing momenjswherem is problem dependent:
Moy (P) =Y ME by (. ity (). (2.5)
j=0

The energy, E, dependent coefficientd/; ; ,(p, j) are numerically or algebraically
determinable, and must satish¢ , , (i, j) = 6;;, for 0 < i, j < m, (Handy and Bessis
1985, Handyet al 1988).

Inserting equation (2.5) into equation (2.4) yields a closed setlof m;)-coupled,
first-order, linear differential equations

Byt (i) ==Y Mppyi+2 sy (j)  for0<i <m,. (2.6)
j=0
For arbitrary b, given the physical energy and starting missing moment values
{p.0()10 < i < my} one can numerically integrate equation (2.6) and proceed to determine
the wavelet transform (equation (2.2)). Facilitating this is the relation:

+00 +oo
Wpo(p) = / xPW (b +x)dx = / (x —b)PW(x)dx 2.7)
or (expanding)
)4
Up0(p) = Z <Z> (=b)’™10,0(q)- (2.8)
q=0

The physical values for the energ¥, and woo(g) = fj;oqull(x) moments, for

0 < g < my, are determined by the EMM (discussed in the following section). In
practice, for each pair of valuea & 2", b = n2") at each poinb = n2" we integrate
equation (2.6) up toy = %a‘z = %2‘2”‘, which then allows us to generate the wavelet
transform coefficients,, ,.
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An important observation is that the asymptotic behaviour of ghg (p) moments,
with respect toy — oo, determines the wavefunction:

(p+1)
Limy—>+oo Moy (p) = <\/7> 0(p/2)¥(b) p = even (2.9)
whered(p) = [T 2 exp(—y?) dy. Forp = 0, 2, we haved (0) = /7 andd(1) = /7 /2.

As will be clarified in the following section, an implicit normalization is assumed in
the implementation of the EMM quantization. Our numerical comparisons between the
wavelet-reconstructed wavefunction and the actual wavefunction (obtained from direct
integration of the Sclidinger equation) will assum& (0) to have the value generated
through equation (2.9) (approximated by a sufficiently lapgealue).

3. A rational fraction potential

We now consider the case of the rational fraction potential problem

gx®

1+ ax?

Let @, , (x) = exp(—yx?)¥ (b + x), or W(b + x) = exp(yx?)d;, (x). The ensuing
equation for®, ,, is

—32W(x) + U(x) = EV(x). (3.1)

d? d 2 2 g(x +b)® _
[— [de + 4yxa + 2y +4y“x i| + |:l+)»(x+b)2i|i| Dy (x) = EDp, (x). (3.2)

Multiplying both sides byc? (1+A(x +b)?) leads to a moment equation of sixth order since
all of the moments,

Wb,y (p) = / dr x” exp(—yx*)W (x + b)
for p > 6, are linearly dependent on the first smssing momentgu, , (1)|0 < i < 5):

A
Up,y (p +6) = —6buy, (p +5) + |:4V2g - 15b2} Up,y(p+4)

A
+ [Sgbyz - 20b3] oy (p+3)

+8 4y*(1+ Ab%) — 4y a(p + 3) — 15gb* + EAl s, (p + 2)

+8  [—20yb(6+ 4p) — 6gb° + 2AbE] 1y, (p + 1)

+g A+ AbD(E — y2+4p) + A(p + 2)(p + 1) — gb®1 s, (p)

+20bg  p(p 4+ Dptpy (p — D) + g A+ 26D p(p — Dpwsy (p =2 (3.3)

and
my=5
Moy (P) =Y MEby(p.i)thpy (i) (3.48)
i=0
with
Mgy, (0, j) =6 ; for0<i, j<5 (3.40)

The Mg ,,, (p, 1) coefficients satisfy the same moment equation relation given above, with
respect to the index. They are generated either numerically or algebraically, through the
initialization conditions given in equation (3
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The relation (from equation (2.6))
Mb,y(o) ,u«b,]/(z)
5 Mb,y(l) ,ub,y(s)
Mb.y(z) Mh,y(4)
ol WIAE 11y (5) (35)
Mb,y (4) Mb,y (6)
Hp,y (D) Wb,y (1)
now becomes (upon substituting equation ¢3)4
b,y (0) 0 0 -1 0 0 0
o,y (D) 0 0 0 -1 0 0
ey (2 | 0 0 0 0 -1 0
ay | me,® | 0 0 0 0 0 -1
Wb,y (4) Maoly]l Maaly]l Maaly] Magly]l Maaly]l Masly]
Wb,y (5) Msoly] Msaly]l Msaly] Msa[y] Msaly] Mss[y]
Mby (O)
by (1)
by (2)
x /’Lby (3) (36)
Moy (D)
Kby (5)

(note, M4 0<j<s = —Mg (6, j) and Msocjcs = —MEgp, (7, j)).

As indicated in the previous sections, given the starting values for the missing moments,
{ms,y=0@i), (0 < i < 5)}, at anyb, one can integrate the above equations. Facilitating the
determination of these starting moment values is the relation in equation (2.6). Accordingly,
one must determine the physical enerdy, and the physical missing moment values
{p=0,=0(i), (0 < i < H)}.

The wo,0(p) moments satisfy the moment equation

groo(p+6) =[E+r(p+2)(p+Dlroo(p) + AEroo(p+2) + p(p — Dioo(p —2)(3.7)

for p > 0. Symmetric configurations, such as the ground state, will have all their odd-order
moments equal to zergipo(0dd = 0. For such configurations, one can streamline the
formalism and work with the even-order Stielties momeants) = wo.0(20). Accordingly,

only u(0), u(1), andu(2) become the nonzero missing moments in this case. An analogous
formulation is possible for antisymmetric configurations; however, for simplicity, these are
not discussed in this paper.

The homogeneous nature of the moment equation requires some normalization condition.
One convenient choice is

u©© +ul) +u2 =1. (3.8)
Eliminating u(0), all of the moments become linearly dependent on the unconstrained
missing moments:(1) and u(2). This may be expressed through the relatiop) =
Mg (p.0) + Y7y Mg (p. j)u(j), where theM . coefficients are readily determinable from
equation (3.4) and the above normalization.

The EMM quantization procedure involves making use of the positivity properties of the
associated wavefunction in order to define constraints on the physically allowed energy and
missing moment values. For the ground state wavefunction, the factaahd(x) > O,
allows us to impose the Hankel-Hadamard, nonlinear, determinental constraints Bn the
parameter and missing moment variables:

ApnlE, u(l),u(2)] >0 form=0,1andn >0 (3.%)
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where
u(m) uim—+1) u(m +n)
u(m+ 1) u(m + 2) oo uim+n+1)
A, = Det : : : : (3.%)
u(m'—i—n) u(m +.n+1) u(m—.l—Zn)

and each of the Stielties momenig,p), is implicitly dependent on the energy parameter,
E, and the unconstrained missing momemts) andu(2).

The algorithmic implementation of EMM theory is discussed in the works by Handy and
Bessis (1985) and Handst al (1988). It entails the use of linear programming (Chvatal
1983) to determine theZ values admitting missing moment solution sets to the above
inequalities. Implementation of this procedure for the ground state yields the ground-state
energy and missing moment values (fjo= 1, A = 0.1):

E =1.105005 494 53562
o,0(0) = 0.446 117 055534 407
Ho,0(2) = 0.238142 672555 330
Hoo(4) =0.315740271910263
mo,0(1, 3,5) =0.

Proceeding with a fourth-order Runge—Kutta numerical integration, we could only
integrate out to an ordey =~ 7, before encountering numerical instability problems.
However, even within this relatively smal domain, the inversg expansion behaviour of
s, (p) was empirically satisfied fop > 4. Specifically, from the integral representation

in equation (2.3), upon performing the change of variabte ,/yx and Taylor expansion,

atb, for Wb + ﬁ) one obtains the expansion:

_ D > 1 +po\ _»
poy(P)=yT Y S @VB)e (”2> y (3.10)
p+p=evenp=>0 "
where thed coefficients are defined in the context of equation (2.9).
Consider fitting the Runge—Kutta iteratgs, ,,(p = 0,2), for / < j < J+ N, to a
truncated analogue of the invergeexpansion ¢ = even, ando < 2N), for4< y; < 7:

_ (D 2N 1 +p )

oy =even =y 5 3 e, 0 ("Z)yj : (3.11)
p+p=evenp>0 "

According to equation (2.9), the leading term of this expansion should approximate the

wavefunction

CY (b, 0) ~ Wexacl D). (3.12)

Our numerical results confirm this. That is, a fourth-order Runge—Kutta integration directly
on the Schadinger equation, in order to obtain the exact ground-state wavefunction,
normalized byWe.ac(0) = C'*?(0, 0), concurred with the truncated inverseexpansion
analysis Wesac(h) ~ C?(b,0), for |b| < 2.2. The C'*? coefficient values given in
figure 1 were generated at = 4. Also, although the Runge—Kuti®y step size was
107°, we generated th€§°’2) coefficients by sampling the Runge—Kutta iterates at intervals
of ;41 —y; = 1071 (for y; ~ 4), to minimize round-off error fluctuations in inverting
equation (3.11) to obtain the'>?s.

We used the inversg expansion to approximate the, , (p) moments folb| < 2.2 and
4 < y < oo. This effectively accelerated the convergence of the direct numerical integration
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25.0 - Actual Solution —
-1 £q.(3.12), p = 0 o
i Eq.(3.12), p = 2 2
20.0 — £q(1.8),-5 £ mpn £ 5----
-1 £q.(1.8),-3 £ mpn & 3---
I Fq{18),-1 £ mpn £ 1 ©
15.0 -
c? "ooooo
- O,
© 100 - o,
X : Oo0
5.0 -
0.0 s,
_ oo
_| Ly 5 ‘O
=5.0 T T
0.0 0.75 1.5 2.25
X
Figure 1. Wgroung V (x) = ﬁixz
6.0
4 % Cou(p,0) —
- \'{ CZ;J(b’O)
io ] (v/m) "1, ,(0)
R 2(7°/m) P p, (2)
2.0 —
5 i
x
0.0
-4.0 L e O T I B
0.0 1.0 2.0 3.0 4.0 5.0

v

Figure 2. W (b) reconstruction ab = +2.5.

for the w; ., (p) moments (refer to figures 2-7). Accordingly, the wavelet expansion
coefficientsw,, , are computable, in principle, fob = n2"| < 2 andy = 2(2—1)2 = arbitrary.
However, in practice we limit things tth = n2"| <2 and 0< y < 7.

In figure 1 we illustrate the exact ground-state solution, the asymptotic estimates
achieved through the truncated invegsexpansion § = 4), and the wavelet reconstructed
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8.0 ‘
1 Coul(b,0) -
- 5 Cz;J(b’O)
50 (7/m) 14, 5(0)
R 2(7°/m) P, (2)
4.0 -
5]
% i
2.0 —
OO N S
-‘20 LI T
0.0 1.0 20 30 40 50

v

Figure 3. W(b) reconstruction ab = +2.0.

10.0
_ CO;J(bVO) -
1 C2(0.0)
I N (y/m) ", ,(0)
so- | S [207m) P 5(2)
o i
© 6.0
X n
4.0
20 ll!l]llll‘(ll('llli]llll
0.0 1.0 2.0 3.0 4.0 5.0
%

Figure 4. W(b) reconstruction ab = +1.5.

approximants. The results from the truncated inveyseexpansion are very good
(equation (3.12)); whereas the wavelet reconstructed results are satisfactory.
It will be noted that the wavelet approximation in figure 1 appear to be off by a constant
C, within the depicted interval. One might speculate that this is due to our exclusion of
terms (from equation (1.8)) correspondingrte= 0 anda = 2" — oo, Or y = 2%1 — 0,
(x—n2"

making the argument af)(T)) very small (essentially, zero) fdx| < 2, the domain
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14.0
. Cou(b,0) —
i | C2;J(byo)
1 (7/7) e, ()
12.0 — ‘\\ 2(73/77)’/2#'&:, 7(2) o
o .
©10.0
X _
8.0 4
6.0 [ R S R S B B LA T R R B
0.0 1.0 2.0 3.0 4.0 5.0
7

Figure 5. W (b) reconstruction ab = +1.0.

20.0 —
17.5
15.0
o ]
©12.5
X 4
10.0
| Cou(b,0) -
7.5 CZ;J(byO)
: (7/77)1/2/*%, 7(0)
: 2(7%/m) e, H(2) -
5.0 N s B e
0.0 1.0 2.0 3.0 4.0 5.0

4

Figure 6. W (b) reconstruction ab = +0.5.

depicted in figure 1. We can estimate

2 o 1
= m.0———w(0).
" A+Bg;wp,ﬁwm
We have that (for the Mexican hat case)
2 1
o) =N= —— and @no= WY 2", 0 ~ N —uoo0).
N ° \/ﬁuoo
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0.4
0.2 T T
0.0
—0.2 7 Cou(b,0) —
N CZ;J(b’O) :
§ (/m) Py, ,(0)
7 2(7°/m) P, S(2) -
_04’ [ l 171 ‘; ‘ T T 1 [ | [
0.0 1.0 2.0 3.0 4.0 5.0

¥

Figure 7. W (b) reconstruction ab = 0.0.

Putting it all together,

4u(O)N? 0.44" 0

M= oMAyB) oM

We then have that for the wavelet approximation corresponding-%0< m < 5,

M = 6, andCs = 3 x 1073, which is off from the empirically determined constant
Cempirical = 0.22 — 0.187 = 3 x 107?; therefore, additional significant corrections must
come from then # 0 terms as well.

In figures 2—7 we illustrate the dependencep(fixed) for \/gub,y(O), 2\/?“;,,,,(2),

Cﬁo)(b, 0), andCﬁz) (b, 0), whereJ, refers to the fact that these coefficients are obtained by
fitting the (truncayted) inversg expansion, ay, to theu,, (0 and 3 integrated results. Of
course, as previously argued, all six of the curves in figures 2—7 must conveé o
(except for numerical instability problems).

We also show in figures 8-11 the wavelet-transform related expres]%'(@w)%

3 1
WW (y, b) (for fixed y values), whereF = 22\/’13” . It can be easily argued that this expression
must converge, pointwise, (& — V (b)) ¥ (b), asy — oo. Specifically, from equation (2.2)
and equation (3.11), in the Mexican hat wavelet case,

Lim, .o WW(y,b) = F <1> (—2W(b) = F (l) (E — V(b)V(b).
2y 2y

The results illustrated in figures 8—11 confirm these asymptotic relations (the curve consisting
of individual points is the functionf — V (b)]Wexac(h)), €xcept for the numericatoise
appearing ay > O(10), for b ~ 0. Again, all the results shown for > 4 were obtained

by using the truncated inverse expansion.
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Figure 8. Verification of Lim,_, (ZV%WW()/,IJ) = (E — V(b))¥(b) (LHS denoted by full

curve), V (b) = —°

e for variousy

4. The Coulomb potential

values.

We consider the one-dimensional Coulomb problem defined by

—0%W(r) — }\Il(r) = EV(r)
" r

(4.1)

whereWw (0) = 0. The wavelet transform, for the Mexican hat case, is

WU (y,b) = N(@2y)+ / dr (1 — 2y (r — b)?) exp(—y (r — b)) W (r)
0

or

WW(y, b) = N(2y)2[(L — 2b%y ) s, (0) + 4by iy, (1) — 2 a3, (2)]

where

oy (p) = fo dr r exp(—y (r — BV ().

The differential equation fo,, , (r) = exp(—y (r — LHW(r) is

1
—[07 + 4y (r = D)o, + 2y + 4y*(r —b)))]Ds,, — Py () = EDyy ().

(4.2)

(4.3)

(4.4)

(4.5)
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Figure 9. Lim, 0o @22 WW(y, b) = (E — V(b))¥(b), 1< y < 1.8.

Multiplying both sides byr*7, integrating from O tooco, and performing the necessary
integration by parts (recalling that, , (0) = 0) yields the moment equation:

4y%up, (p+3) = —p(p+ Dy, (p — 1) — [4by (p + 1) + s, (p)
+Ay(p+2) =2y — E — 4y?p% s, (p + 1) + 8y%bps, (p+2).  (4.6)

It is important to appreciate the significance of such moment equations. The potential,
V(r), determines the asymptotic behaviour of the physical and unphysical sigies—~
exp(+ [ /V(r) — E), from the usual JWKB analysis (Bender and Orszag 1978). In the case
that one is considering generalized moments of the type in equation (4.4), such moments
cannot exist if the unphysical solution grows faster than the Gaussian exponential drop-off.
Nevertheless, the above moment equation, in general, can be made to yield finite moments
even for unphysical values of the energy. A simple case is the pre\ﬂg@ﬁq problem. In

the present case of the Coulomb problem, the Gaussian kernel dominates (the/expr)
asymptotic behaviour for unphysical states. As such, the moment equation would yield their
generalized moments.
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Figure 10. Lim, oo @22 WW(y,b) = (E = V()W (b), 37< y < 9.

The moment equation involves three missing momenis, (1)|0 < i < 2}, so long as
y # 0; therefore,

2
Moy (P) =Y Meby(p. Dipy (i) for0<i<2 4.7)
i=0
From equation (4.4), we have that
By ttiy (P) = —thpy (P + 2) + 2bptsy (p + 1) — b1, (p). (4.8)
With respect to the missing moments, we obtain
—b? 2b -1

5 (1.0 c+1><E_3) 0 (o)
P (ub,y(1)> =| \y 42 dy? 2y (ub,y(1)> . (49
v Wb,y (2) i <2b + 1) (E _ 5) Wb,y (2)
2y2 y  dy? 4y2 2y
The singular nature of these equations complicates its numerigategration starting
from the originy = 0. The moments are not analyticjyat= 0 because the moment integral
in equation (4.4) is divergent for negatiye values due to the pure exponential drop-off

nature of the physical states (Lim,, ¥ (r) = r exp(—+/|E|r)).
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Figure 11. Lim, oo @22 WW(y,b) = (E - V(b)) ¥ (b), 10< y < 18.

In order to be able to integrate equation (4.9), we must be able to solve for the moments
at somey # 0 value (and alb values) and then integrate in both directions: zero and infinity.
We will designate the chosen startiggvalue byy;.

It will be noted thatu, ,—o(p) = noo(p). Theu(p) = noo(p) moments, as well as
the energy,E, can be obtained from the EMM method (Handy and Bessis 1985). One
important observation is that thg = 0 case corresponds to a zero missing moment
problem in which the normalization prescription can be taken toa:{® = 1. More
precisely, if we sety = 0 in equation (4.6), the ensuing moment equation involves no
missing moments once we se{0) = poo(0) = 1. The EMM method works very well
for the zero missing moment probleny (= 0). For problems in which the unphysical
states become asymptotically unbounded (at least in one direction) much faster than the
exp(—yr?) kernel in equation (4.4), ensuring that the momentsdigk,nysica dO NOt exist,
then EMM is applicable and will yield converging bounds to the discrete-state energy and
missing moments. When this is not satisfied, then EMM cannot be made to yield converging
bounds for the energy and missing moments. However, if the energy is kaqwiori,
which it is in this case (since we can use EMM for the zero missing moment problem
corresponding tgy = 0), then we can use EMM to yield good estimates for the missing
momentsa(ﬂb,% 0, Mb,y, D), Hb,y, (2)).
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Figure 12. Wavelet reconstruction for the Bohr ground stateaxp(f%[r — 1]). The
selection of the se8 (together with equation (1.8)) is motivated by consideration of the
more |mportant wavelet coefficients consistent with the numerical integration domain studied:

™ 42 <y < 5 OF —3 < m < 2. Improvement in the wavelet reconstructed approximation

(data correspondmg 6@ and @) is obtained by looking at additional wavelet coefficients,
for m > 3, computed using/athematica

One must be careful in using EMM to determifye, ,, (0 — 2)}, since for eaclb value
an implicitly varying normalization prescription is use@fzo Wby, (i) = 1. In order to
ensure that the underlying wavefunctioh(r), has a fixed normalization, we can only use
EMM at one particulan value (say,b = 0), and then integrate along ttéedirection to
obtain the other missing moment values. To do this, we must make use of the relation (from
equation (4.4))

abl‘/bﬁy(p) = Zy[ﬂb,y(p +1 - bﬂb,y(p)]' (410)

For the missing moments, this becomes:

() 2y o 2\ (1 ©
3b <Mb y( )) 1 E (Mb,y(l)) . (411)
oy (2) [Zb + 2] [3 - 2yb2:| 2by by (2)
y 2y

We used EMM to determine the momentsbat 0 andy, = 0.05. The (approximate)
values are ,bLo,o.o5(O) = 0.087999 2498#0,0_05(1) = 0.211996 0726#070.05(2) =
0.700004 6776. We can easily integrate equation (4.11) om0 to b = 15, and higher.
Utilizing the generated valug$, 005(0 — 2)|0 < b < 15}, we can then use equation (4.9)
to integrate in thes direction. We did so foy — 100. The asymptotic relations (resulting
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Table 1. W (b < 0) Estimates from equation (4.12).

b N ETTTRIC RN e

—05 100 0502—3)® 0.500(—3)
—-10 100 0341-3)  0.340—3)
—15 100 0Q245-3)  0.244-3)
—20 100 0178-3) 0.178-3)
—25 100 0130-3) 0.130-3)
—30 100 0Q93%-4)  0.937(—4)
—-35 100 0Q671-4)  0.66%—4)
—40 100 0472—4)  0.471(—4)
—45 100 0327%—-4)  0.326(—4)
—50 100 Q22A-4) 0.22—4)
-55 100 0148-4)  0.148-4)
—60 100 Q966(-5)  0.965—5)
—-65 100 0616-5)  0.615-5)
—-70 100 038A-5)  0.381-5)
—75 100 0Q22%-5)  0.227-5)
-80 100 012%-5)  0.127%-5)
-85 100 060%—6)  0.608—6)
—90 100 0160-6)  0.15%—6)
—95 100 —0.173-6) —-0.173—6)
—-100 100 —0.455-6) —0.455—6)
~105 100 —0.73%—6) —0.73%(—6)
—-110 100 —-0.106-5) —0.106(—5)
—115 100 —0.146-5) —0.146(—5)
—-120 100 —-0.19%-5) —0.197%—5)
—125 100 —0.264—5) —0.264(—5)
—-130 100 —0.353-5) —0.354—5)
~135 100 —0.471-5) —0.472-5)
—-140 100 —0.628-5) —0.628-5)
~145 100 —0.833-5) —0.835-5)

2 Denotes power of 10.
from the fact that\/g exp(—y (r — b)?) — 8(r — b), asy — 00)

Lim, o \/Z,Lb,y(p) — bPW(b) (4.12)

was readily confirmedyf = 0, 2) and used to generate the ground-state solution (normalized
according tto:O 1o.005() = 1). In order to compare the results with the true answer
(normalized to unity atr = 1), Wy (r) = rexp(—%(r — 1)), we had to renormalize

our integration results according (¥ (1) = \/gubzlyoo(O)) = 1. The results were

consistently accurate within less than 1%, fo<® < 15. This is depicted in figure 12.

For unphysicak values ¢ < 0), all the above can be implemented. Consistent with the
implicit assumption from equation (4.4) thét(» < 0) = 0, the above numerical integration
yields Wapproxr < 0) &~ 0 (specifically, values of the order of(00~3) to O(10~°) as noted
in table 1).

In order to compare the above results with those coming from a wavelet reconstruction
ansatz (utilizing equation (1.8)), it is empirically important to consider the contribution from
y, < 0.05. In order to integrate in this regime, we must perform a change of variables for
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equation (4.9) involvingr = % = a2. We obtain:

L b 1
) (Hhe@Y 2t % 3 Zf ma®\
3 Mb,a(z) = _<a+2> _<2_20z) Mb,a(z) . (4.13)
/'Lb,a( ) (2]9 1) (E 5) Mb,a( )
-1 - — 4+ = — - -
o 2 2 2a

Utilizing the initial values quoted aboveuf, (p), for 0 < b < 15, y = 0.05, and
0 < p < 2), we can integrate equation (4.13) fram = Té.oss = 10 up to a sulfficiently
large o value at which point an asymptotic expansion of the moment integrals will be
applicable fora — oo. Specifically (Abramowitz and Stegun 1972), from equation (4.4):

(—1)7(2b)

o0
_ 2
Hoy=4 (P) = exp(=yb )Zyp Z p1! p2!

p=0  p1tp2=p
By implementing an appropriatsymptotic matchingrocedure (Bender and Orszag 1978)
with the integrated results from equation (4.13), we can recoveru p) moments
corresponding to the adopted normalization used in generating the missing moments at
b=0,y =0.05 (21‘2:0 no005() = 1). For the purposes of this ‘pedagogic’ analysis,
we used the exact values insteatho(p) = exp(%)zf’“(p + 1)!, corresponding to the
normalization depicted in figure 12. Specifically, we were able to use equation (4.14) to
integrate up toy = 5 = 0.0078125, forb = 0, andy = 1, = 0.03125, for larger
b ~ O(10) values. Since the ground-state wavefunction is known (and in partiaylaf0)
is easily related to thé&rfc(z) function (Abramowitz and Stegun 1972)) one can readily
useMathematicato generate many of the more important wavelet coefficients (from
equation (1.8)) corresponding to smallvalues §{ = ﬁ m > 3).

The results in figure 12 yield an impressive confirmation of the validity of equation (1.8).
To obtain the illustrated results, we utilized our formalism to obtain the wavelet coefficients
corresponding tdb = n2"| < 16 (from equation (4.9)), as well asy,—2 ), for [n] < 4
(from equation (4.13)). Simply using these coefficients only gave the poorer curves
depicted in figure 12; including the wavelet coefficients égf, ,—0), wherem < 20, did
substantially improve things. Upon adding more coefficients (generated\iatmematic
corresponding to smaly values andb| < 32, better results were obtained. In all, 155
wavelet coefficients were used.

The wavelet reconstruction results for< 0 yielded an oscillatory configuration with
absolute magnitude of order(@!) (based on the same 155 wavelet coefficients) and
illustrated in figure 13. It is compared with the results presented in table 1. Note that in
figure 13, the data corresponding po= 0 and p = 2 appear to coincide, due to their
inherent accuracy (refer to table 1) and the resolution available in the illustration.

Ho,o(p + 201+ p2). (4.14)

5. Conclusion

We have shown that a moment-based formalism enables the generation of the wavelet
transform for one-dimensional rational potential problems, from first principles, without any

theoretical approximations. The recovery (reconstruction) of the discrete-state wavefunction
is then possible through two approaches. The first involves the use of asymptotic moment
relations of the type given in equation (2.9). The second makes use of the dyadic wavelet
reconstruction approximation, as represented in equation (1.8). The first procedure gives
excellent results; whereas the dyadic-reconstruction-based approximants appear to slowly
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Figure 13. Wavelet reconstruction in the unphysical region < 0) for Bohr ground state,
W (r < 0) = 0. Isolated points correspond to limit in equation (4.12) (also given in table 1);
continuous curve corresponds to dyadic wavelet reconstruction formula in equation (1.8).

converge to the true solution. Nevertheless, for the one-dimensional Coulomb potential,
the dyadic reconstruction yields very good results, provided a large number of terms are
generated. Despite the manifest dichotomy in reconstruction procedures, in fact they are
both wavelet based. Specifically, we can show that the asymptotic relation in equation (2.9)
is exactly a wavelet-transform based result, corresponding to the integration over all scales
0 < a < oo and translation parameter valueso < b < +00. The details of this will be
presented elsewhere (Handy and Murenzi 1997).
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