
Continuous wavelet transform analysis of quantum systems with rational potentials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 4709

(http://iopscience.iop.org/0305-4470/30/13/022)

Download details:

IP Address: 171.66.16.72

The article was downloaded on 02/06/2010 at 04:24

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 4709–4729. Printed in the UK PII: S0305-4470(97)78776-6

Continuous wavelet transform analysis of quantum systems
with rational potentials

Carlos R Handy† and Romain Murenzi‡
† Department of Physics, Clark Atlanta University, Atlanta, GA 30314, USA
‡ Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta,
GA 30314, USA

Received 17 October 1996, in final form 27 February 1997

Abstract. Given a one-dimensional Sturm–Liouville Schrödinger problem with rational
polynomial potential, we can generate the continuous wavelet transform (CWT) for its discrete
states, thereby permitting the systematic multiscale reconstruction of the corresponding bound-
state wavefunction. A key component in this is the use of properly dilated (a) and translated (b)
moments,µb,a(p), which readily transform the configuration space Hamiltonian into a finite set
of dynamically coupled, linear, first-order differential equations in the dilation-related variable,
γ ≡ 1

2a2 :

∂γ µb,γ (i) =
ms∑
j=0

Mi,j [E, b, γ ]µb,γ (j) 06 i 6 ms.

The infinite scale problema = ∞ (γ = 0) is readily solved through moment quantization
methods and used to generate theµb,a(p) moments at all scales. We demonstrate the essentials

through the rational fraction potential,V (x) = gx6

1+λx2 , and the1
r

Coulomb potential.

0. Overview

Over the last 10 years, wavelet transform analysis has become a powerful tool in the analysis
and synthesis of signals and images (Chui 1992). Its main contribution is the definition of
a systematic process for identifying, extracting, and reconstructing the multiscale features
of a signal through simultaneous time and frequency localization.

Until the recent works by Handy and Murenzi (1996, 1997; HM), the incorporation of
wavelet theory into quantum mechanics has depended, almost exclusively, on variational
methods. Exceptions to this are the earlier works by Plantevin (1992) on wavelet transform
analysis for noninteracting quantum systems, and Paul’s (1984) specialized wavelet-coherent
state analysis for the one-dimensional harmonic oscillator and Coulomb potentials.

Working within an extended space of properly translated and scaled moments,µb,γ (p) =∫
dx xp exp(−γ x2)9(x + b) (for the Mexican hatwavelet case, where the scale parameter

is defined bya = 1√
2γ

), HM have been able to transform the Schrödinger equation, for
rational fraction potentials, into a theoretically exact, finite set of dynamically coupled,
linear, differential moment equations

∂γµb,γ (i) =
ms∑
j=0

Mi,j [E, b, γ ]µb,γ (j) 06 i, j 6 ms (0.1)

where theMi,j coefficients andms are dependent on the nature of the potential function.
Given the appropriate initial information (forγ = 0), the solution to these equations
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readily yields the wavelet transform for the unknown discrete state, which in turn (through
various inversion or reconstruction methods) allows us to generate the desired wavefunction
configuration,9E . The only essential ingredient in solving these equations is knowledge of
the infinite scale properties, ata = ∞ or γ = 0, of the discrete state desired (µb,0(p) and
E). This information is readily provided through moment quantization (MQ) techniques.

MQ refers to transforming the configuration space Schrödinger equation,Hx9(x) =
E9(x), into a moment equation (ME),ν(p) = ∑ms

i=0Cp,i [E]ν(p + i), where ν(p) ≡
µ0,0(p), and quantizing within such a representation. The ME is equivalent to generating
the power series expansion coefficients for the Fourier transform of the configuration
space wavefunction solution (9E(x) → 9̃E(k)). Clearly, depending on the nature of the
potential function, the associated Fourier representation will involve a differential operator
of arbitrarily high order (̃Hk). In terms of the ME represention, this involves an increased
number of independent (initialization ormissing moment) variables, than the usualtwo
associated with second-order differential operators in configuration space.

For the last 16 years, the development of MQ methods has received much attention
by several independent groups. One of the earlier formulations by Blankenbecleret al
(1980) quantized the ME representation of the Schrödinger equation by imposing constraints
derived from asymptotic information about the (physical) power moments (Limp→∞ ν(p)).
Refinements by Killingbecket al (1985), attempted to simplify this procedure, as well as
incorporate regular perturbation theory methods (in this regard, refer also to Fernandez
and Ogilvie 1993). The incorporation of perturbation theory within the ME representation
has been particularly effective, particularly as pursued in subsequent, multidimensional,
investigations by Witwit (1995).

Paralleling these developments are the works by Handy and Bessis (1985; HB), and
Handy et al (1988) who made unprecedented use of themoment problem(Shohat and
Tamarkin 1963) nature of the ME representation, as applied to bosonic ground states.
Their method,the eigenvalue moment method(EMM), introduced linear programming to
quantum physics, in a significant way, and also produced one of the simplest theories for
generating converging lower and upper bounds to the ground-state energy (which can also
be extended to excited states, provided certain empirical assumptions are made, Handy and
Lee (1991)). Also, because of its nonperturbative nature, the EMM approach is sensitive
to singular-perturbation/strong-coupling type Hamiltonians, and has easily solved important
multidimensional problems when compared with more sophisticated approaches (Handyet
al 1988). In contrast to the asymptotic methods by Blankenbecleret al (1980), the EMM
approach requires no asymptotic information about the moments (which, in general, can be
difficult to obtain). Instead, it focuses on the importance of themissing momentstructure
of the ME representation.

Another related approach is theRayleigh–Ritz missing momentanalysis recently
developed by Handy (1996). It may be easier to implement, for larger-dimensioned systems,
than the EMM analysis.

Any one of the QM approaches cited can be used in implementing the methods
developed here. However, the latter two highlight the essential role that the missing
moments play in the incorporation of continuous wavelet analysis in quantum mechanics.

In this work we apply the HM formalism, in some detail, to two rational polynomial
potential problems:V (x) = gx6

1+λx2 , and the1
r

Coulomb potential. Previous works by HM
primarily focus on implementing their moment-wavelet formalism in the context of the
quartic anharmonic oscillator potential problem.

For simplicity, we limit our analysis to the ground-state case only. Handy and Murenzi
(1996) have shown how to extend the analysis to excited states.
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Our formalism applies to a broad class of wavelets. The exclusive appearance of the
Mexican hatwavelet in this work is only for convenience. In general, the methods developed
here apply to any wavelet of the form∂ixeQ(x), i > 1, providedQ(x) is a polynomial, and
Lim|x|→∞[∂ixeQ(x)] = 0.

1. Continuous-wavelet analysis

An important aspect of wavelet analysis is the notion of aframe. It was introduced by
Duffin and Schaefer (1952) and used by Daubechieset al (1986), and Daubechies (1990)
for canonical and affine coherent states.

A family, {ψj }j∈J , of vectors in Hilbert space,H, is called aframe if for any f ∈ H
there exist two constantsA > 0 and 0< B <∞, such that

A‖f ‖2 6
∑
j∈J
|〈ψj |f 〉|2 6 B‖f ‖2. (1.1)

The frame is said to be tight ifA = B.
Consider the operatorT : H → l2(J ), defined byTf = {〈ψj |f 〉}j∈J . The operator

D = T ∗T , whereT ∗ is the adjoint operator ofT , is invertible and the family

ψ̃j = (T ∗T )−1ψj = 2

A+ B
∞∑
k=0

(
1− 2D

A+ B
)k
ψj (1.2)

defines thedual frameof ψj , with corresponding boundsB−1 6 A−1 <∞.
An important reconstruction formula is

f (x) =
∑
j∈J
〈ψj |f 〉ψ̃j (x) (1.3a)

or

f (x) =
∑
j∈J
〈ψ̃j |f 〉ψj(x). (1.3b)

Using only the first term in the expansion in equation (1.2), one getsψ̃j approx= 2
A+Bψj ,

resulting in

f (x) ≈ 2

A+ B
∑
j∈J
〈ψj |f 〉ψj(x). (1.4)

If the frame is tight,A = B, one hasψ̃j = 1
A
ψj giving us the exact expression

f (x) = 1

A

∑
j∈J
〈ψj |f 〉ψj(x). (1.5)

A continuous-wavelet transform requires the selection of a wavelet function,ω(x),
satisfying

∫∞
−∞

|ω̂(k)|2
|k| dk < +∞, whereω̂(k) is the Fourier transform (Grossman and Morlet

1984). In addition, we adopt the unit normalization,
∫ |ω(x)|2 = 1, utilized by Daubechies

(1992) in her dyadic reconstruction formula, given below. One of the more popular wavelet
functions is theMexican hat, corresponding to

ω(x) = −N ∂2
x exp(− 1

2x
2) = N (1− x2) exp(− 1

2x
2)

whereN = 2√
3
π−

1
4 . We shall use this wavelet throughout this work.
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The wavelet transform of a one-dimensional signal (wavefunction),9(x), is given by

W9(a, b) ≡
√
a−1

∫
ω

(
(x − b)
a

)
9(x) dx (1.6)

wherea > 0 andb define the scale and translation parameters, respectively.
The recovery of the wavefunction is possible through the use of the relations in

equations (1.3a) and (1.3b):

9(x) =
∑
m,n

〈ωm,n(x)|9(x)〉ω̃m,n(x) (1.7a)

or

9(x) =
∑
m,n

〈ω̃m,n(x)|9(x)〉ωm,n(x) (1.7b)

whereωm,n(x) = a−m/20 ω(
x−nb0a

m
0

am0
) define a frame (for arbitrary integersm andn), ω̃m,n(x)

is its dual frame.
As previously noted, if the frame istight thenω̃m,n(x) = 2

A+Bωm,n(x), whereA
B
= 1. If

the frame is not tight,A
B
6= 1, then there are two possibilities (Daubechies 1990, 1992). The

first is to compute the dual frame. For this case, if the frame consists of wavelets (dilations
and translations of one mother wavelet,ω(x)), then the dual must be computed for each
translation,ω̃0,n. Although, in principle, this entails the calculation of an infinite number
of functions, in practice only a finite number are used. Despite this, there are some special
wavelets,ω(x), andb0 parameter values, for which even though theωm,n(x) are not close
to defining a tight frame, nevertheless all theω̃m,n(x) are dilated versions of one function
(Daubechies 1992, Frazieret al 1988).

The second possibility applies to non-tightsnug frames for whichA
B
≈ 1. In this case,

one may take the first term in the defining series expansion forω̃m,n(x), as in equation (1.4).
The resulting approximation yields the reconstruction formula (for the casea0 = 2, b0 = 1)
(Daubechies 1991)

9(x) ≈ 2

A+ B
∑
m,n

ωm,n
1√
2m
ω

(
(x − n2m)

2m

)
(1.8)

whereωm,n ≡ W9(2m, n2m), andA+ B = 6.819 (for the Mexican hat case).
The reconstruction formula in equation (1.8) is approximating the wavefunction through

a superposition of localized oscillating structures. The wavefunction is being approximated
in the L2 norm. Through the EMM discussed in the following section, we will be able
to generate a finite number of theωm,n coefficients, thereby enabling the approximate
reconstruction of the wavefunction.

We stress once more that our principal objective is to show how EMM theory can be used
to generate theωm,n coefficients. There are many possible wavelet-reconstruction formulae,
some involving Gaussians (Choet al 1993) as opposed to the Mexican hat wavelets in
equation (1.8). We only utilize equation (1.8) as an example of how to utilize the generated
wavelet coefficients in the reconstruction of the wavefunction. Also, the method can be
extended to excited states (Handy and Murenzi 1996).
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2. Generating theωm,n through the EMM

From the preceding discussion, the Mexican hat wavelet transform for the wavefunction is
given by (after a translation change of variables):

W9(a, b) = N
√
a−1

∫ +∞
−∞

9(b + x)[1− (x/a)2] exp(− 1
2(x/a)

2) dx (2.1)

or (definingγ ≡ 1
2a2 )

W9(a, b) = N (2γ ) 1
4 [µb,γ (0)− 2γµb,γ (2)] (2.2)

where

µb,γ (p) ≡
∫ +∞
−∞

xp9(b + x) exp(−γ x2) dx p > 0 (2.3)

are the moments of the measure8b,γ (x) ≡ 9(b + x) exp(−γ x2).
The moments satisfy the following differential equation with respect to theγ > 0

variable:

∂γµb,γ (p) = −µb,γ (p + 2). (2.4)

For all one-dimensional Schrödinger Hamiltonians with rational fraction potentials (as well
as many other types of potentials which can be converted into rational fraction form after
a suitable change of variables), all of the moments become linearly dependent on the first
1+ms moments (referred to asmissing moments), wherems is problem dependent:

µb,γ (p) =
ms∑
j=0

ME,b,γ (p, j)µb,γ (j). (2.5)

The energy,E, dependent coefficientsME,b,γ (p, j) are numerically or algebraically
determinable, and must satisfyME,b,γ (i, j) = δi,j , for 0 6 i, j 6 ms (Handy and Bessis
1985, Handyet al 1988).

Inserting equation (2.5) into equation (2.4) yields a closed set of(1 + ms)-coupled,
first-order, linear differential equations

∂γµb,γ (i) = −
ms∑
j=0

ME,b,γ (i + 2, j)µb,γ (j) for 06 i 6 ms. (2.6)

For arbitrary b, given the physical energy and starting missing moment values
{µb,0(i)|06 i 6 ms} one can numerically integrate equation (2.6) and proceed to determine
the wavelet transform (equation (2.2)). Facilitating this is the relation:

µb,0(p) =
∫ +∞
−∞

xp9(b + x) dx =
∫ +∞
−∞

(x − b)p9(x) dx (2.7)

or (expanding)

µb,0(p) =
p∑
q=0

(
p

q

)
(−b)p−qµ0,0(q). (2.8)

The physical values for the energy,E, and µ0,0(q) ≡
∫ +∞
−∞ xq9(x) moments, for

0 6 q 6 ms , are determined by the EMM (discussed in the following section). In
practice, for each pair of values (a = 2m, b = n2m) at each pointb = n2m we integrate
equation (2.6) up toγ = 1

2a
−2 = 1

22−2m, which then allows us to generate the wavelet
transform coefficientsωm,n.
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An important observation is that the asymptotic behaviour of theµb,γ (p) moments,
with respect toγ →∞, determines the wavefunction:

Limγ→+∞ µb,γ (p) =
(

1√
γ

)(p+1)

θ(p/2)9(b) p = even (2.9)

whereθ(ρ) = ∫ +∞−∞ y2ρ exp(−y2) dy. Forp = 0, 2, we haveθ(0) = √π andθ(1) = √π/2.
As will be clarified in the following section, an implicit normalization is assumed in
the implementation of the EMM quantization. Our numerical comparisons between the
wavelet-reconstructed wavefunction and the actual wavefunction (obtained from direct
integration of the Schrödinger equation) will assume9(0) to have the value generated
through equation (2.9) (approximated by a sufficiently largeγ value).

3. A rational fraction potential

We now consider the case of the rational fraction potential problem

−∂2
x9(x)+

gx6

1+ λx2
9(x) = E9(x). (3.1)

Let 8b,γ (x) ≡ exp(−γ x2)9(b + x), or 9(b + x) = exp(γ x2)8b,γ (x). The ensuing
equation for8b,γ is[
−
[

d2

dx2
+ 4γ x

d

dx
+ 2γ + 4γ 2x2

]
+
[

g(x + b)6
1+ λ(x + b)2

]]
8b,γ (x) = E8b,γ (x). (3.2)

Multiplying both sides byxp(1+λ(x+b)2) leads to a moment equation of sixth order since
all of the moments,

µb,γ (p) =
∫ ∞
−∞

dx xp exp(−γ x2)9(x + b)

for p > 6, are linearly dependent on the first sixmissing moments, {µb,γ (i)|06 i 6 5}:

µb,γ (p + 6) = −6bµb,γ (p + 5)+
[

4γ 2λ

g
− 15b2

]
µb,γ (p + 4)

+
[

8
λ

g
bγ 2− 20b3

]
µb,γ (p + 3)

+g−1[4γ 2(1+ λb2)− 4γ λ(p + 5
2)− 15gb4+ Eλ]µb,γ (p + 2)

+g−1[−2λγ b(6+ 4p)− 6gb5+ 2λbE]µb,γ (p + 1)

+g−1[(1+ λb2)(E − γ (2+ 4p))+ λ(p + 2)(p + 1)− gb6]µb,γ (p)

+2λbg−1p(p + 1)µb,γ (p − 1)+ g−1(1+ λb2)p(p − 1)µb,γ (p − 2) (3.3)

and

µb,γ (p) =
ms=5∑
i=0

ME,b,γ (p, i)µb,γ (i) (3.4a)

with

ME,b,γ (i, j) = δi,j for 06 i, j 6 5. (3.4b)

TheME,b,γ (p, i) coefficients satisfy the same moment equation relation given above, with
respect to thep index. They are generated either numerically or algebraically, through the
initialization conditions given in equation (3.4b).
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The relation (from equation (2.6))

∂

∂γ


µb,γ (0)
µb,γ (1)
µb,γ (2)
µb,γ (3)
µb,γ (4)
µb,γ (5)

 = −

µb,γ (2)
µb,γ (3)
µb,γ (4)
µb,γ (5)
µb,γ (6)
µb,γ (7)

 (3.5)

now becomes (upon substituting equation (3.4a))

∂

∂γ


µb,γ (0)
µb,γ (1)
µb,γ (2)
µb,γ (3)
µb,γ (4)
µb,γ (5)

 =


0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

M4,0[γ ] M4,1[γ ] M4,2[γ ] M4,3[γ ] M4,4[γ ] M4,5[γ ]
M5,0[γ ] M5,1[γ ] M5,2[γ ] M5,3[γ ] M5,4[γ ] M5,5[γ ]



×


µbγ (0)
µbγ (1)
µbγ (2)
µbγ (3)
µbγ (4)
µbγ (5)

 (3.6)

(note,M4,06j65 = −ME,b,γ (6, j) andM5,06j65 = −ME,b,γ (7, j)).
As indicated in the previous sections, given the starting values for the missing moments,

{µb,γ=0(i), (0 6 i 6 5)}, at anyb, one can integrate the above equations. Facilitating the
determination of these starting moment values is the relation in equation (2.6). Accordingly,
one must determine the physical energy,E, and the physical missing moment values
{µb=0,γ=0(i), (06 i 6 5)}.

Theµ0,0(p) moments satisfy the moment equation

gµ0,0(p+ 6) = [E+ λ(p+ 2)(p+ 1)]µ0,0(p)+ λEµ0,0(p+ 2)+p(p− 1)µ0,0(p− 2)(3.7)

for p > 0. Symmetric configurations, such as the ground state, will have all their odd-order
moments equal to zero,µ0,0(odd) = 0. For such configurations, one can streamline the
formalism and work with the even-order Stieltjes momentsu(ρ) ≡ µ0,0(2ρ). Accordingly,
only u(0), u(1), andu(2) become the nonzero missing moments in this case. An analogous
formulation is possible for antisymmetric configurations; however, for simplicity, these are
not discussed in this paper.

The homogeneous nature of the moment equation requires some normalization condition.
One convenient choice is

u(0)+ u(1)+ u(2) = 1. (3.8)

Eliminating u(0), all of the moments become linearly dependent on the unconstrained
missing momentsu(1) and u(2). This may be expressed through the relationu(ρ) =
M̂E(ρ, 0)+∑2

j=1 M̂E(ρ, j)u(j), where theM̂E coefficients are readily determinable from
equation (3.4) and the above normalization.

The EMM quantization procedure involves making use of the positivity properties of the
associated wavefunction in order to define constraints on the physically allowed energy and
missing moment values. For the ground state wavefunction, the fact that9ground(x) > 0,
allows us to impose the Hankel–Hadamard, nonlinear, determinental constraints on theE

parameter and missing moment variables:

1m,n[E, u(1), u(2)] > 0 for m = 0, 1 andn > 0 (3.9a)
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where

1m,n ≡ Det


u(m) u(m+ 1) . . . u(m+ n)

u(m+ 1) u(m+ 2) . . . u(m+ n+ 1)
...

...
...

...

u(m+ n) u(m+ n+ 1) . . . u(m+ 2n)

 (3.9b)

and each of the Stieltjes moments,u(ρ), is implicitly dependent on the energy parameter,
E, and the unconstrained missing momentsu(1) andu(2).

The algorithmic implementation of EMM theory is discussed in the works by Handy and
Bessis (1985) and Handyet al (1988). It entails the use of linear programming (Chvatal
1983) to determine theE values admitting missing moment solution sets to the above
inequalities. Implementation of this procedure for the ground state yields the ground-state
energy and missing moment values (forg = 1, λ = 0.1):

E = 1.105 005 494 535 62

µ0,0(0) = 0.446 117 055 534 407

µ0,0(2) = 0.238 142 672 555 330

µ0,0(4) = 0.315 740 271 910 263

µ0,0(1, 3, 5) = 0.

Proceeding with a fourth-order Runge–Kutta numerical integration, we could only
integrate out to an orderγ ≈ 7, before encountering numerical instability problems.
However, even within this relatively smallγ domain, the inverseγ expansion behaviour of
µb,γ (p) was empirically satisfied forγ > 4. Specifically, from the integral representation
in equation (2.3), upon performing the change of variabley ≡ √γ x and Taylor expansion,
at b, for 9(b + y√

γ
), one obtains the expansion:

µb,γ (p) = γ−
(p+1)

2

∞∑
p+ρ=even,ρ>0

1

ρ!
(∂
ρ

b 9(b))θ

(
p + ρ

2

)
γ−

ρ

2 (3.10)

where theθ coefficients are defined in the context of equation (2.9).
Consider fitting the Runge–Kutta iterates,µb,γj (p = 0, 2), for J 6 j 6 J + N , to a

truncated analogue of the inverseγ expansion (ρ = even, andρ 6 2N ), for 46 γj < 7:

µb,γj (p = even) = γ−
(p+1)

2
j

2N∑
p+ρ=even,ρ>0

1

ρ!
C
(p)

J (b, ρ)θ

(
p + ρ

2

)
γ
− ρ

2
j . (3.11)

According to equation (2.9), the leading term of this expansion should approximate the
wavefunction

C
(p)

J (b, 0) ≈ 9exact(b). (3.12)

Our numerical results confirm this. That is, a fourth-order Runge–Kutta integration directly
on the Schr̈odinger equation, in order to obtain the exact ground-state wavefunction,
normalized by9exact(0) ≡ C

(0,2)
J (0, 0), concurred with the truncated inverseγ expansion

analysis9exact(b) ≈ C
(0,2)
J (b, 0), for |b| 6 2.2. The C(0,2)J coefficient values given in

figure 1 were generated atγ = 4. Also, although the Runge–Kuttaδγ step size was
10−5, we generated theC(0,2)J coefficients by sampling the Runge–Kutta iterates at intervals
of γj+1 − γj = 10−1 (for γj ≈ 4), to minimize round-off error fluctuations in inverting
equation (3.11) to obtain theC(0,2)J s.

We used the inverseγ expansion to approximate theµb,γ (p) moments for|b| 6 2.2 and
46 γ <∞. This effectively accelerated the convergence of the direct numerical integration
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Figure 1. 9ground, V (x) = x6

1+.1x2 .

Figure 2. 9(b) reconstruction atb = +2.5.

for the µb,γ (p) moments (refer to figures 2–7). Accordingly, the wavelet expansion
coefficientsωm,n are computable, in principle, for|b = n2m| 6 2 andγ = 1

2(2m)2 = arbitrary.
However, in practice we limit things to|b = n2m| 6 2 and 06 γ < 7.

In figure 1 we illustrate the exact ground-state solution, the asymptotic estimates
achieved through the truncated inverseγ expansion (N = 4), and the wavelet reconstructed
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Figure 3. 9(b) reconstruction atb = +2.0.

Figure 4. 9(b) reconstruction atb = +1.5.

approximants. The results from the truncated inverseγ expansion are very good
(equation (3.12)); whereas the wavelet reconstructed results are satisfactory.

It will be noted that the wavelet approximation in figure 1 appear to be off by a constant
C, within the depicted interval. One might speculate that this is due to our exclusion of
terms (from equation (1.8)) corresponding ton = 0 anda = 2m →∞, or γ = 1

22m+1 → 0,
making the argument ofω( (x−n2m)

2m ) very small (essentially, zero) for|x| 6 2, the domain
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Figure 5. 9(b) reconstruction atb = +1.0.

Figure 6. 9(b) reconstruction atb = +0.5.

depicted in figure 1. We can estimate

CM = 2

A+ B
∞∑

m=M
ωm,0

1√
2m
ω(0).

We have that (for the Mexican hat case)

ω(0) = N ≡ 2√
3
√
π

and ωm,0 = W9(2m, 0) ≈ N 1√
2m
µ0,0(0).
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Figure 7. 9(b) reconstruction atb = 0.0.

Putting it all together,

CM ≈ 4u(0)N 2

2M(A+ B) = 0.44
u(0)

2M
.

We then have that for the wavelet approximation corresponding to−5 6 m 6 5,
M = 6, andC6 = 3 × 10−3, which is off from the empirically determined constant
Cempirical = 0.22− 0.187 = 3 × 10−2; therefore, additional significant corrections must
come from then 6= 0 terms as well.

In figures 2–7 we illustrate theγ dependence (b fixed) for
√
γ

π
µb,γ (0), 2

√
γ 3

π
µb,γ (2),

C
(0)
Jγ
(b, 0), andC(2)Jγ (b, 0), whereJγ refers to the fact that these coefficients are obtained by

fitting the (truncated) inverseγ expansion, atγ , to theµb,γ (0 and 2) integrated results. Of
course, as previously argued, all six of the curves in figures 2–7 must converge to9(b)

(except for numerical instability problems).
We also show in figures 8–11 the wavelet-transform related expression1

F (2γ )
5
4

W9(γ, b) (for fixedγ values), whereF ≡ 2
3
2 π

1
4√

3
. It can be easily argued that this expression

must converge, pointwise, to(E−V (b))9(b), asγ →∞. Specifically, from equation (2.2)
and equation (3.11), in the Mexican hat wavelet case,

Limγ→∞W9(γ, b) = F
(

1

2γ

)5
4

(−∂2
b9(b)) = F

(
1

2γ

)5
4

(E − V (b))9(b).

The results illustrated in figures 8–11 confirm these asymptotic relations (the curve consisting
of individual points is the function [E − V (b)]9exact(b)), except for the numericalnoise
appearing atγ > O(10), for b ≈ 0. Again, all the results shown forγ > 4 were obtained
by using the truncated inverseγ expansion.
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Figure 8. Verification of Limγ→∞ (2γ )
5
4

F W9(γ, b) = (E − V (b))9(b) (LHS denoted by full

curve),V (b) = b6

1+.1b2 , for variousγ values.

4. The Coulomb potential

We consider the one-dimensional Coulomb problem defined by

−∂2
r 9(r)−

1

r
9(r) = E9(r) (4.1)

where9(0) = 0. The wavelet transform, for the Mexican hat case, is

W9(γ, b) = N (2γ ) 1
4

∫ ∞
0

dr (1− 2γ (r − b)2) exp(−γ (r − b)2)9(r) (4.2)

or

W9(γ, b) = N (2γ ) 1
4 [(1− 2b2γ )µb,γ (0)+ 4bγµb,γ (1)− 2γµb,γ (2)] (4.3)

where

µb,γ (p) ≡
∫ ∞

0
dr rp exp(−γ (r − b)2)9(r). (4.4)

The differential equation for8b,γ (r) ≡ exp(−γ (r − b)2)9(r) is

−[∂2
r + 4γ (r − b)∂r + (2γ + 4γ 2(r − b)2)]8b,γ − 1

r
8b,γ (r) = E8b,γ (r). (4.5)
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Figure 9. Limγ→∞ (2γ )
5
4

F W9(γ, b) = (E − V (b))9(b), 16 γ 6 1.8.

Multiplying both sides byr1+p, integrating from 0 to∞, and performing the necessary
integration by parts (recalling that8b,γ (0) = 0) yields the moment equation:

4γ 2µb,γ (p + 3) = −p(p + 1)µb,γ (p − 1)− [4bγ (p + 1)+ 1]µb,γ (p)

+[4γ (p + 2)− 2γ − E − 4γ 2b2]µb,γ (p + 1)+ 8γ 2bµb,γ (p + 2). (4.6)

It is important to appreciate the significance of such moment equations. The potential,
V (r), determines the asymptotic behaviour of the physical and unphysical states,9(r)→
exp(± ∫ √V (r)− E), from the usual JWKB analysis (Bender and Orszag 1978). In the case
that one is considering generalized moments of the type in equation (4.4), such moments
cannot exist if the unphysical solution grows faster than the Gaussian exponential drop-off.
Nevertheless, the above moment equation, in general, can be made to yield finite moments
even for unphysical values of the energy. A simple case is the previousx6

1+0.1x2 problem. In

the present case of the Coulomb problem, the Gaussian kernel dominates the exp(+√−Er)
asymptotic behaviour for unphysical states. As such, the moment equation would yield their
generalized moments.
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Figure 10. Limγ→∞ (2γ )
5
4

F W9(γ, b) = (E − V (b))9(b), 3.76 γ 6 9.

The moment equation involves three missing moments{µb,γ (i)|06 i 6 2}, so long as
γ 6= 0; therefore,

µb,γ (p) =
2∑
i=0

ME,b,γ (p, i)µb,γ (i) for 06 i 6 2. (4.7)

From equation (4.4), we have that

∂γµb,γ (p) = −µb,γ (p + 2)+ 2bµb,γ (p + 1)− b2µb,γ (p). (4.8)

With respect to the missing moments, we obtain

∂

∂γ

(
µb,γ (0)
µb,γ (1)
µb,γ (2)

)
=


−b2 2b −1(

b

γ
+ 1

4γ 2

) (
E

4γ 2
− 3

2γ

)
0

1

2γ 2

(
2b

γ
+ 1

4γ 2

) (
E

4γ 2
− 5

2γ

)

(
µb,γ (0)
µb,γ (1)
µb,γ (2)

)
. (4.9)

The singular nature of these equations complicates its numericalγ -integration starting
from the originγ = 0. The moments are not analytic atγ = 0 because the moment integral
in equation (4.4) is divergent for negativeγ values due to the pure exponential drop-off
nature of the physical states (Limr→∞9(r) = r exp(−√|E|r)).
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Figure 11. Limγ→∞ (2γ )
5
4

F W9(γ, b) = (E − V (b))9(b), 106 γ 6 18.

In order to be able to integrate equation (4.9), we must be able to solve for the moments
at someγ 6= 0 value (and allb values) and then integrate in both directions: zero and infinity.
We will designate the chosen startingγ value byγs .

It will be noted thatµb,γ=0(p) = µ0,0(p). The u(p) ≡ µ0,0(p) moments, as well as
the energy,E, can be obtained from the EMM method (Handy and Bessis 1985). One
important observation is that theγ = 0 case corresponds to a zero missing moment
problem in which the normalization prescription can be taken to beu(0) = 1. More
precisely, if we setγ = 0 in equation (4.6), the ensuing moment equation involves no
missing moments once we setu(0) = µ0,0(0) = 1. The EMM method works very well
for the zero missing moment problem (γ = 0). For problems in which the unphysical
states become asymptotically unbounded (at least in one direction) much faster than the
exp(−γ r2) kernel in equation (4.4), ensuring that the moments for8unphysical do not exist,
then EMM is applicable and will yield converging bounds to the discrete-state energy and
missing moments. When this is not satisfied, then EMM cannot be made to yield converging
bounds for the energy and missing moments. However, if the energy is knowna priori,
which it is in this case (since we can use EMM for the zero missing moment problem
corresponding toγ = 0), then we can use EMM to yield good estimates for the missing
moments,(µb,γs (0), µb,γs (1), µb,γs (2)).
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Figure 12. Wavelet reconstruction for the Bohr ground state,r exp(− 1
2 [r − 1]). The

selection of the setS(1) (together with equation (1.8)) is motivated by consideration of the
more important wavelet coefficients consistent with the numerical integration domain studied:

1
2×42 6 γ 6 1

2×4−3 , or −36 m 6 2. Improvement in the wavelet reconstructed approximation

(data corresponding toS(2) andS(3)) is obtained by looking at additional wavelet coefficients,
for m > 3, computed usingMathematica.

One must be careful in using EMM to determine{µb,γs (0− 2)}, since for eachb value
an implicitly varying normalization prescription is used,

∑2
i=0µb,γs (i) = 1. In order to

ensure that the underlying wavefunction,9(r), has a fixed normalization, we can only use
EMM at one particularb value (say,b = 0), and then integrate along theb-direction to
obtain the other missing moment values. To do this, we must make use of the relation (from
equation (4.4))

∂bµb,γ (p) = 2γ [µb,γ (p + 1)− bµb,γ (p)]. (4.10)

For the missing moments, this becomes:

∂

∂b

(
µb,γ (0)
µb,γ (1)
µb,γ (2)

)
=

 −2bγ 2γ 0
0 −2bγ 2γ

−
[

2b + 1

2γ

] [
3− E

2γ
− 2γ b2

]
2bγ

(µb,γ (0)µb,γ (1)
µb,γ (2)

)
. (4.11)

We used EMM to determine the moments atb = 0 andγs = 0.05. The (approximate)
values areµ0,0.05(0) = 0.087 999 2498, µ0,0.05(1) = 0.211 996 0726, µ0,0.05(2) =
0.700 004 6776. We can easily integrate equation (4.11) fromb = 0 to b = 15, and higher.
Utilizing the generated values{µb,0.05(0− 2)|0 6 b 6 15}, we can then use equation (4.9)
to integrate in theγ direction. We did so forγ → 100. The asymptotic relations (resulting
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Table 1. 9(b < 0) Estimates from equation (4.12).

b γ

√
γ
π
µb,γ (0)

√
γ
π
b−2µb,γ (2)

−0.5 100 0.502(−3)a 0.500(−3)
−1.0 100 0.341(−3) 0.340(−3)
−1.5 100 0.245(−3) 0.244(−3)
−2.0 100 0.178(−3) 0.178(−3)
−2.5 100 0.130(−3) 0.130(−3)
−3.0 100 0.939(−4) 0.937(−4)
−3.5 100 0.671(−4) 0.669(−4)
−4.0 100 0.472(−4) 0.471(−4)
−4.5 100 0.327(−4) 0.326(−4)
−5.0 100 0.222(−4) 0.222(−4)
−5.5 100 0.148(−4) 0.148(−4)
−6.0 100 0.966(−5) 0.965(−5)
−6.5 100 0.616(−5) 0.615(−5)
−7.0 100 0.382(−5) 0.381(−5)
−7.5 100 0.227(−5) 0.227(−5)
−8.0 100 0.127(−5) 0.127(−5)
−8.5 100 0.609(−6) 0.608(−6)
−9.0 100 0.160(−6) 0.159(−6)
−9.5 100 −0.173(−6) −0.173(−6)
−10.0 100 −0.455(−6) −0.455(−6)
−10.5 100 −0.737(−6) −0.737(−6)
−11.0 100 −0.106(−5) −0.106(−5)
−11.5 100 −0.146(−5) −0.146(−5)
−12.0 100 −0.197(−5) −0.197(−5)
−12.5 100 −0.264(−5) −0.264(−5)
−13.0 100 −0.353(−5) −0.354(−5)
−13.5 100 −0.471(−5) −0.472(−5)
−14.0 100 −0.628(−5) −0.628(−5)
−14.5 100 −0.833(−5) −0.835(−5)

a Denotes power of 10.

from the fact that
√
γ

π
exp(−γ (r − b)2)→ δ(r − b), asγ →∞)

Limγ→∞

√
γ

π
µb,γ (p) = bp9(b) (4.12)

was readily confirmed (p = 0, 2) and used to generate the ground-state solution (normalized
according to

∑2
i=0µ0,0.05(i) = 1). In order to compare the results with the true answer

(normalized to unity atr = 1), 9gr.(r) = r exp(− 1
2(r − 1)), we had to renormalize

our integration results according toN(9(1) =
√
∞
π
µb=1,∞(0)) = 1. The results were

consistently accurate within less than 1%, for 06 b 6 15. This is depicted in figure 12.
For unphysicalr values (r < 0), all the above can be implemented. Consistent with the

implicit assumption from equation (4.4) that9(r < 0) = 0, the above numerical integration
yields9approx(r < 0) ≈ 0 (specifically, values of the order of O(10−3) to O(10−6) as noted
in table 1).

In order to compare the above results with those coming from a wavelet reconstruction
ansatz (utilizing equation (1.8)), it is empirically important to consider the contribution from
γs < 0.05. In order to integrate in this regime, we must perform a change of variables for
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equation (4.9) involvingα = 1
2γ = a2. We obtain:

∂

∂α

(
µb,α(0)
µb,α(1)
µb,α(2)

)
=


b2

2α2
− b
α2

1

2α2

−
(
b

α
+ 1

2

)
−
(
E

2
− 3

2α

)
0

−1 −
(

2b

α
+ 1

2

)
−
(
E

2
− 5

2α

)

(
µb,α(0)
µb,α(1)
µb,α(2)

)
. (4.13)

Utilizing the initial values quoted above (µb,γ (p), for 0 6 b 6 15, γ = 0.05, and
0 6 p 6 2), we can integrate equation (4.13) fromαs = 1

2×0.05 = 10 up to a sufficiently
large α value at which point an asymptotic expansion of the moment integrals will be
applicable forα→∞. Specifically (Abramowitz and Stegun 1972), from equation (4.4):

µb,γ= 1
2α
(p) = exp(−γ b2)

∞∑
ρ=0

γ ρ
∑

ρ1+ρ2=ρ

(−1)ρ1(2b)ρ1

ρ1!ρ2!
µ0,0(p + 2ρ1+ ρ2). (4.14)

By implementing an appropriateasymptotic matchingprocedure (Bender and Orszag 1978)
with the integrated results from equation (4.13), we can recover theµ0,0(p) moments
corresponding to the adopted normalization used in generating the missing moments at
b = 0, γ = 0.05 (

∑2
i=0µ0,0.05(i) = 1). For the purposes of this ‘pedagogic’ analysis,

we used the exact values instead,µ0,0(p) = exp( 1
2)2

p+2(p + 1)!, corresponding to the
normalization depicted in figure 12. Specifically, we were able to use equation (4.14) to
integrate up toγ = 1

2×43 = 0.007 8125, forb = 0, andγ = 1
2×42 = 0.031 25, for larger

b ≈ O(10) values. Since the ground-state wavefunction is known (and in particularµb,γ (0)
is easily related to theErf c(z) function (Abramowitz and Stegun 1972)) one can readily
useMathematicato generate many of the more important wavelet coefficientsωm,n (from
equation (1.8)) corresponding to smallγ values (γ = 1

2×4m , m > 3).
The results in figure 12 yield an impressive confirmation of the validity of equation (1.8).

To obtain the illustrated results, we utilized our formalism to obtain the wavelet coefficients
corresponding to|b = n2m| 6 16 (from equation (4.9)), as well asω(m=2,n), for |n| 6 4
(from equation (4.13)). Simply using these coefficients only gave the poorer curves
depicted in figure 12; including the wavelet coefficients forω(m,n=0), wherem 6 20, did
substantially improve things. Upon adding more coefficients (generated fromMathematica)
corresponding to smallγ values and|b| 6 32, better results were obtained. In all, 155
wavelet coefficients were used.

The wavelet reconstruction results forb < 0 yielded an oscillatory configuration with
absolute magnitude of order O(10−1) (based on the same 155 wavelet coefficients) and
illustrated in figure 13. It is compared with the results presented in table 1. Note that in
figure 13, the data corresponding top = 0 andp = 2 appear to coincide, due to their
inherent accuracy (refer to table 1) and the resolution available in the illustration.

5. Conclusion

We have shown that a moment-based formalism enables the generation of the wavelet
transform for one-dimensional rational potential problems, from first principles, without any
theoretical approximations. The recovery (reconstruction) of the discrete-state wavefunction
is then possible through two approaches. The first involves the use of asymptotic moment
relations of the type given in equation (2.9). The second makes use of the dyadic wavelet
reconstruction approximation, as represented in equation (1.8). The first procedure gives
excellent results; whereas the dyadic-reconstruction-based approximants appear to slowly
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Figure 13. Wavelet reconstruction in the unphysical region(r < 0) for Bohr ground state,
9(r < 0) ≡ 0. Isolated points correspond to limit in equation (4.12) (also given in table 1);
continuous curve corresponds to dyadic wavelet reconstruction formula in equation (1.8).

converge to the true solution. Nevertheless, for the one-dimensional Coulomb potential,
the dyadic reconstruction yields very good results, provided a large number of terms are
generated. Despite the manifest dichotomy in reconstruction procedures, in fact they are
both wavelet based. Specifically, we can show that the asymptotic relation in equation (2.9)
is exactly a wavelet-transform based result, corresponding to the integration over all scales
0 6 a < ∞ and translation parameter values−∞ < b < +∞. The details of this will be
presented elsewhere (Handy and Murenzi 1997).
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